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A Monte Carlo model for estimating tornado impacts
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ABSTRACT: Determining the likelihood and severity of tornado disasters requires an understanding of the dynamic
relationship between tornado risk and vulnerability. As population increases in the future, it is likely that tornado disaster
frequency and magnitude will amplify. This study presents the Tornado Impact Monte Carlo (TorMC) model, which simulates
tornado events atop a user-defined spatial domain to estimate the possible impact on people, the built-environment or other
potentially vulnerable assets. Using a Monte Carlo approach, the model employs a variety of sampling techniques on observed
tornado data to provide greater insight into the tornado disaster potential for a location. Simulations based on 10 000 years of
significant tornado events for the relatively high-risk states of Alabama, Illinois and Oklahoma are conducted to demonstrate
the model processes, and its reliability and applicability. These simulations are combined with a fine-scale (100 m), residential
built-environment cost surface to illustrate the probability of housing unit impact thresholds for a contemporary year. Sample
results demonstrate the ability of the model to depict successfully tornado risk, residential built-environment exposure and
the probability of disaster. Additional outcomes emphasize the importance of developing versatile tools that capture better
the tornado risk and vulnerability attributes in order to provide precise estimates of disaster potential. Such tools can provide
emergency managers, planners, insurers and decision makers a means to advance mitigation, resilience and sustainability
strategies.
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1. Introduction

Over the last 80 years, the frequency and magnitude of
weather-related disasters and losses have been increasing
(Bouwer, 2011; Smith and Katz, 2013). The attribution
of the underlying cause for the observed amplification in
weather-related disaster frequency and magnitude is a con-
tentious topic (Pielke, 2005; Bouwer, 2011; Huggel et al., 2013;
Kunkel et al., 2013). However, at the most fundamental level
it involves the juxtaposition of a hazard event (e.g. risk of a
tornado) with people and their assets (e.g. vulnerability of a
certain segment of the populace, housing, critical infrastructure,
to a tornado) that determines disaster potential, consequence and
severity. To date, there has been limited research determining
how risk and vulnerability interact to shape tornado disaster
characteristics. Even less attention has been paid to developing
tools and methodologies to examine the dynamic relationship
between tornado risk and vulnerability.

In the present research, tornado risk is defined as the spatiotem-
poral probability of tornado occurrence, or hazard, of a certain
magnitude, whereas tornado vulnerability is represented by a
basic physical exposure metric (e.g. the number of individuals,
households or some other tangible asset potentially affected by a
tornado). While vulnerability includes other components – such
as adaptive capacity (i.e. coping, or adapting, to a hazard) and
sensitivity (i.e. degree to which a system is impacted by a haz-
ard), these components and their interactions are often very
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complex and difficult to quantify at a high resolution across a
large spatiotemporal domain (Cutter et al., 2009; Morss et al.,
2011). For this reason, this study focuses on a quantifiable and
well-measured variable, the housing unit (HU), to exemplify
aspects and utility of the model.

The initial goal of this research is to present a tool that exam-
ines the interaction of tornado risk and vulnerability to mea-
sure tornado disaster frequency, magnitude and disaster poten-
tial better, whether from a historical or future perspective. The
described Tornado Impact Monte Carlo (TorMC) model simu-
lates years of tornado events atop a geographical region while
assessing their impacts, or costs, on the underlying physical vul-
nerability landscape. To demonstrate the utility and efficacy of
the TorMC model, 10 000 years of significant (≥Enhanced Fujita
Scale 2 magnitude or EF2+) tornadoes were simulated for the
states of Alabama, Illinois and Oklahoma to estimate the num-
ber of HUs affected by each path in an hypothetical contemporary
year. Simulation results as well as model sensitivity and reliabil-
ity are highlighted through a number of statistical and graphical
procedures.

2. Background

As populations continue to grow, the increased placement of peo-
ple and their assets in physically vulnerable locations is leading
to greater disaster potential (Changnon et al., 2000; Nicholls and
Small, 2002; Burkett and Davidson, 2012; Ashley et al., 2014;
Ashley and Strader, 2015; Strader and Ashley, 2015). Recent
studies have sought to examine tornado risk and vulnerability
(namely, the exposure component) by using geographic infor-
mation systems (GIS). Over the last decade, advancements in
GIS capabilities and affiliated datasets have permitted studies to
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superimpose tornado events or their likeness atop exposure land-
scapes to analyse potential tornado impacts and losses on popu-
lations (Rae and Stefkovich, 2000; Wurman et al., 2007; Ashley
et al., 2014; Rosencrants and Ashley, 2015). Recent research has
also coupled Monte Carlo (MC) simulation methods with the
tornado hazard to provide greater insight into tornado incidence
(Meyer et al., 2002) and impacts on policyholders (Daneshvaran
and Morden, 2007). MC simulation is a computational modelling
technique that employs repeated random sampling to obtain the
distribution of an unknown probabilistic entity (Mooney, 1997).
This technique is distinguished from other types of computa-
tional models because of two unique characteristics, iteration and
randomness. The ability of MC simulations to provide proba-
bilistic rather than deterministic solutions yields greater value to
stakeholders and those with a vested interest as it provides more
information about likely ‘best case’ and ‘worst case’ outcomes.

In the last 2 decades, MC simulations were employed in the
field of hazard sciences to examine the effects and consequences
of relatively rare, yet high-impact, geophysical events (Meyer
et al., 2002; Rahman et al., 2002; Apel et al., 2004; Daneshvaran
and Morden, 2007). In the hazards research community, MC sim-
ulations have often been employed to acquire probability distri-
butions (Meyer et al., 2002), return intervals or periods (Rahman
et al., 2002; Daneshvaran and Morden, 2007) and/or probability
of exceedence (POE) measures of extreme events (Apel et al.,
2004). More recently, models employing MC simulation tech-
niques were developed in the reinsurance and catastrophe mod-
elling fields (e.g. Aon Impact Forecasting, Swiss Re, Gen Re).
However, most of these models are proprietary and unavailable
to researchers. To date, only two available studies (Meyer et al.,
2002; Daneshvaran and Morden, 2007) have applied MC simu-
lation techniques to the tornado hazard. The MC simulation in
a study by Meyer et al. (2002) used random sampling from sta-
tistical distributions of tornado characteristics (i.e. occurrence,
number of tornadoes, path length and width, magnitude) to model
solely significant tornado occurrence in the conterminous United
States. In the study by Daneshvaran and Morden (2007), the Aon
Impact Forecasting Monte Carlo model is highlighted. They used
MC methods to simulate tornado occurrence probabilities and
return periods as well as potential losses for their policyholders
in the United States.

3. TorMC model design

There are ∼65 years of functional tornado data, with much
of the data subject to inaccuracy and bias (e.g. Brooks et al.,
2003; Doswell, 2007). Even when controlling for these data
issues and non-meteorological biases, small sample size remains
a paramount issue for research studying the climatology of
these relatively rare events (Doswell, 2007). MC simulations
paired with tornado hazards (i.e. the TorMC model) do not
present more accurate or realistic measures of tornado risk and
climatology because their inputs remain bounded by the envelope
of observed events; rather, they provide a larger ‘snapshot’ or
‘window’ of tornado event outcomes based on historical data.
It is entirely plausible that, given the small sample size of
observed tornado data, extremes, or ‘tails’ of the distribution,
event attribute values (e.g. length, width, magnitude, count) have
not been captured adequately over the last 65 years. Tornado
events and their characteristics could be occurring potentially
in patterns for thousands of years or more (Meyer et al., 2002;
Doswell, 2007). In addition, previous research examining the
disaster consequences for a location have been constrained by

the number of tornado paths employed and the tornado path
placement. The major advantage of the TorMC model is that it
permits the estimation of regional disaster probability through
tens of thousands of simulated tornado events in contrast to only a
handful of outcomes. Thus, the TorMC model provides an overall
better grasp of large-scale tornado risk and potential tornado
impact variability.

The TorMC model comprises four general steps: (1) study
region and model parameter definition; (2) tornado footprint cre-
ation; (3) tornado cost assessment, and (4) output production
(Figure 1). The TorMC model was designed to be highly modular
(Petersen, 2012) in order to provide a user with as many simu-
lation options as possible. Model parameter choices are selected
prior to executing the program and allow the user to control the
type of output generated by the TorMC model. Model parame-
ters, steps, considerations and caveats are discussed hereafter.

3.1. Study region

The first step of the model process begins with the users defining
a study domain on which they want to perform the MC sim-
ulation. The TorMC model is compatible with a study area of
any shape or size (e.g. conterminous United States, state, county
or custom) in shapefile (.shp) format. As illustrated by previ-
ous studies employing tornado MC methods (Meyer et al., 2002;
Daneshvaran and Morden, 2007), the study area size should be
80 km2 or greater. This area corresponds to the Storm Prediction
Center’s (SPC) probability forecasts that signify the chance of
severe weather within 40 km of any point in the United States
(Brooks et al., 2003). Domains smaller than 80 km2 may result
in an underestimation of tornado occurrence within the region
due to the limited observed tornado record and small sample
size (∼59 000 events in the conterminous United States (Doswell,
2007)).

Edge effects occur in models that sample lines with starting
points, preferred azimuths and ending points that fall outside
a domain (e.g. TorMC model simulated tornado paths). As the
majority of tornadoes in the United States move from southwest
to northeast (Suckling and Ashley, 2006), an under-sampling of
tornadoes is apparent in a user-selected region’s south and west
sides (Figure 2). This edge effect is removed or corrected for
in the TorMC model by adding a simple 100 km buffer to the
study area and thereafter sampling all events within the buffer. A
clipping routine, which is discussed in a forthcoming section, is
later used in the model to reclaim the user’s original domain.

3.2. Tornado counts

The TorMC model attempts to simulate tornado events
by using historical data acquired from the SPC SVRGIS
(http://www.spc.noaa.gov/gis/svrgis/) data. Although there are
many issues with the observed tornado data (e.g. width (Brooks,
2004; Strader et al., 2015a); reporting bias (Brooks et al., 2003;
Doswell et al., 2005; Anderson et al., 2007); counts (Brooks
et al., 2003; Verbout et al., 2006; Tippett et al., 2015)), these
data are the only accessible source of extensive tornado event
information. The SVRGIS tornado shapefile, which contains the
observed tornado record, is integrated into the TorMC model.
This permits the sampling of historical event lengths, widths,
years, starting locations, ending locations and magnitudes.

The number of simulated tornadoes is based on the observed
SVRGIS tornado data within the user-provided study region by
randomly selecting an annual tornado count from a given year
in the historical data (1950–2014) using a bootstrap (Efron and
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Figure 1. Tornado Impact Monte Carlo (TorMC) model flow chart. Rhombus shapes indicate model input parameters, squares represent model
processes, rounded-corner rectangles denote simulation decisions or choices and the oval highlights the model output or ending process.

Tibshirani, 1994), or random sampling with replacement, tech-
nique. Although the SVRGIS data contain information as far
back as 1950, annual tornado counts from 1950 to 1953 are
often removed because they are considerably less complete and
are of a lower quality than those from 1954 to 2014 (Agee and
Childs, 2014). These abnormal counts are attributed to different
sources of tornado event information (i.e. U.S. Nuclear Regula-
tory Commission; Grazulis, 1993) prior to the establishment of
the National Severe Storms Forecast Center in 1952. Although
it is preferable to remove 1950–1953 from the considered data,
the user does have the capability to randomly sample randomly
the annual tornado counts (adjusted or unadjusted) and their
attributes from any available SVRGIS temporal range as well as
other sources of data (e.g. Grazulis, 1993) that fit the SVRGIS
format.

The TorMC model does not determine an exact number of
tornadoes to produce; rather, it simulates years of tornado events.
For instance, the model user may want to generate 10 000 years of
tornado events atop a particular study region. The TorMC model
would then randomly sample or select an annual tornado count
from a single SVRGIS data year (1954–2014) within the study
region. This randomly chosen count would then represent the
total number of tornadoes the model will generate during the first
year of simulation. In this case, the process would be repeated

9999 more times, with replacement, until each simulation year
contains a total number of tornadoes to create. The benefit of
simulating tornadoes during a given year is to capture better the
inherent year-to-year variability in annual tornado occurrences
across a study region.

3.3. Tornado magnitudes

Next, the user must also decide what magnitude of tornadoes to
simulate. The user can choose to generate a single magnitude
(i.e. EF0, EF1 etc.) tornado class or a range of tornado magni-
tudes (e.g. (EF0+), significant (EF2+) and violent (EF4+)). The
TorMC model acknowledges but makes no attempt to correct
for the known bias towards higher tornado intensity ratings prior
to 1970 (Verbout et al., 2006; Thorne and Vose, 2010; Edwards
et al., 2013). Future TorMC versions will accommodate and
rectify any known tornado magnitude or intensity rating biases.
Nevertheless, tornado occurrences are progressively rarer as
magnitude increases; the TorMC model accounts for this varia-
tion by modifying the total number of tornadoes to construct in a
particular simulation year. For instance, if the user wants to gen-
erate 10 000 years of violent tornadoes across the studied region,
only those observed tornado events that are within the study
region and meet the user-defined magnitude criteria (EF4+)
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Figure 2. Point density map representing tornado ending points (longitude, latitude) from a 10 000 year Tornado Impact Monte Carlo (TorMC)
simulation for the state of Alabama. (a) Illustrates the non-corrected edge effects, while (b) highlights the corrected edge effects from the buffer-clip

(inflation–deflation) procedure.

will be considered in the randomly sampled SVRGIS year. This
process ensures that there will not be under- or over-sampling
of tornadoes at a given magnitude, while an approximate rep-
resentation (based on observed record) of tornado counts by
magnitude will be created for all TorMC model simulation years.

Once the TorMC model selects a random SVRGIS year and
its associated observed tornado count, it then develops a sec-
ond bootstrap sample to select a particular magnitude of tor-
nado to simulate. This sampling process is then repeated until
the desired total number of simulation years is reached. Boot-
strap re-sampling captures the potential variability in tornado
magnitudes in a year while also taking the relative percentage
of all events of a given magnitude into account. For example,
if a user chooses to generate significant tornado paths atop the
study region from 1954 to 2014, the model will randomly select
a year’s significant annual tornado path count as the total number
of paths to generate in the first simulation year. In this randomly
chosen year, there may be 50 (30 EF2, 15 EF3, 4 EF4 and 1 EF5)
significant tornadoes within the study region. The model would
then randomly select one tornado magnitude, record it, place it
back into the empirical data and repeat the process 49 more times
until it captures a list of 50 tornado magnitudes for that simula-
tion year. In this case, the user can expect the model to generate
more EF2 than EF5 magnitude events simply based on their prob-
ability of occurrence.

3.4. Tornado lengths and azimuths

Initially, the azimuths of all tornado paths within the regionally
filtered SVRGIS data are calculated. An azimuth is then chosen
randomly from the data based on the previously selected tornado
magnitude within the study region. Because tornado azimuths
are not random and have a climatological tendency to travel in
particular directions in the conterminous United States (Suckling
and Ashley, 2006), this process captures the character of tornado
path azimuths within the study region. The procedure ensures

that a simulated tornado of a given magnitude would have its
azimuth correspond to that of an observed tornado with the
same magnitude in the study region. The tornado path length
is also selected using this method by pairing simulated tornado
lengths with observed tornado lengths within the same magnitude
class. The model can also employ random sampling from model
distributions (e.g. Weibull) and their fits from the observed data
as opposed to sampling directly from the historical observed data.

3.5. Tornado widths

Similar to Meyer et al. (2002) and Brooks (2004), simulated tor-
nado path widths are determined by bootstrap sampling from a
Weibull distribution fit on the observed tornado width data by
tornado damage rating or magnitude in the study region. The
Weibull distribution was chosen because it is non-negative and
always positively skewed (Brooks, 2004). The primary advan-
tage of using a statistical distribution (as opposed to bootstrap
techniques) to model tornado path widths is that the Weibull dis-
tribution characterizes actual tornado widths better by EF scale
magnitude compared with observed widths while at the same
time reducing the effects of abrupt and apparent step functions in
the historical tornado width data caused by systematic changes in
event-recording practices. For instance, 1950–1994 tornado path
widths were denoted by the mean path width and transitioned to
reported maximum path widths by 1995 (Brooks, 2004; Agee
and Childs, 2014; Strader et al., 2015a). A second modification
in tornado reporting practices occurred in 2007 with the imple-
mentation of the EF scale. Although unrelated to tornado path
width reporting practices, this change to the EF scale in 2007 has
produced, as a whole, wider tornado path widths. The reasons
for this increase in tornado widths post EF-scale implementation
are not known. To apply this modelling option, the TorMC model
requires the user to provide a comma-separated values parameter
file containing the alpha (shape) and beta (scale) parameters by
tornado magnitude that the model calls upon to generate random
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Figure 3. Shows 10 000 randomly generated longitude and latitude points on the surface of the earth. (a) Indicates the clustering of points near the
poles, which results from simple uniform random generation, while (b) illustrates the spatially correct random points.

tornado widths. The model also accommodates the simulation of
tornado path widths using random sampling with replacement if
the user prefers this technique.

3.6. Tornado placement

The first tornado initiation option randomly generates latitude
and longitude co-ordinates within the study region that serve
as the touchdown locations for each simulated tornado. If ran-
dom points are being generated on a spherical surface they will
have a tendency to cluster near the poles due to converging
(non-parallel) lines of longitude (Weisstein, 2002a; Figure 3).
However, the TorMC model corrects for any spatial bias that may
arise during this step by employing an algorithm that randomly
creates latitude and longitude co-ordinates within the study area
(Weisstein, 2002a). An equal tornado touchdown likelihood in
the study region may be sufficient for relatively small geograph-
ical areas (e.g. regional) but potentially problematic on larger
scales (e.g. conterminous United States) due to climatological
differences in tornado occurrences within the United States (e.g.
Dixon et al., 2011; Farney and Dixon, 2014; Tippett et al., 2015).
Given this issue, the second tornado start location creation option
considers the potential variation in tornado touchdown probabil-
ity in a study region. This method requires the user to provide a
tornado touchdown probability raster surface (e.g. cf. figure 4 in
Brooks et al., 2003) on which the start locations will be spatially
weighted. The second methodology is suitable at all geographi-
cal spatial scales and provides a greater advantage in increasingly
larger, user-defined study regions. The tornado event simulation
portion of the TorMC model concludes with the creation of tor-
nado footprint polygons (i.e. maximum areal extent of tornadic
winds or tornado length multiplied by width) with the spatial
extent and orientation controlled by the simulated path lengths,
widths and azimuths.

3.7. Cost extraction

The cost extraction portion of the model begins with the second
step in the edge correction process by clipping spatially the

tornado polygons using the original, user-defined study region.
The next step employs the user-provided raster cost surface
to assess the tornado impact. Prior to running the model, the
user must provide the raster cost surface on which the TorMC
model will calculate zonal statistics (i.e. the summarization of
geospatial raster datasets based on vector geometries) using the
generated tornado footprint polygons. The model accommodates
any type of raster cost surface (continuous or categorical) as
long as the user defines a cost field within the raster. The zonal
statistics portion of the model permits a variety of statistical
calculation options (e.g. mean, sum). If the user provides a
raster cost surface of gridded population, a sum statistic option
computes a zonal statistic representing the total number of people
affected by each tornado path.

The user has the option to apply different types of
cost-extraction techniques – e.g. ‘centroid within’ and ‘inter-
sect’ (Figure 4). These methods affect the zonal statistics
calculation for each tornado footprint. The centroid within
extraction method calculates zonal statistics solely for those
raster cells where the tornado footprint intersects the centroid
of the cell, while the intersect extraction technique includes all
the raster cells that are touched by a tornado footprint in the
zonal statistics calculation. Although not a part of this TorMC
iteration, the ‘completely within’ and ‘areal weight’ techniques
provide additional means of cost extraction. The completely
within method includes all raster cells that are contained within
the bounds of the tornado footprint. The areal weight (AW)
method (Schlossberg, 2003; Balk et al., 2005; SEDAC, 2015;
Ashley et al., 2014) provides a more accurate measure of tor-
nado costs, especially for those grid cells along the edges of the
tornado footprint. Where a tornado footprint transects portions
of grid cells, cost tallies (e.g. HUs) are adjusted based on the
areal fraction of the grid cells affected (Figure 4). For example, if
a tornado path bisects a grid cell representing 100 HUs, then the
total number of HUs impacted by the tornado in that grid cell is
50 (i.e. 0.50 × 100 HU = 50 HUs). This process is then repeated
for all grid cells that the tornado footprint traverses. Each
cost-extraction technique is heavily influenced by the spatial
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Figure 4. Illustration of centroid within, intersect, completely within and areal weighted (AW) cost-extraction techniques. The grid cells represent
the cost surface with black dots comprising the centroid of each cell, and the non-shaded rectangle signifies a potential tornado footprint. Shaded
grid cells indicate those that would be included in the tornado cost calculation during each type of cost-extraction method (after Schlossberg, 2003).

resolution, or cell size, of the raster cost surface. For instance, a
raster surface with low spatial resolution in combination with the
centroid method would result in an underestimation of tornado
costs. In general, a raster with a high spatial resolution will lead
to superior estimates of impact.

3.8. Model output

The TorMC model yields both .shp and .csv files representing
the TorMC geo-dataframe with various simulation data fields.
Fields generated include unique tornado field identifier (FID),
projected footprint polygon geometry, starting latitude and
longitude, ending latitude and longitude, path length (km) and
width (km), azimuth (∘), magnitude (0–5), simulation year and
zonal statistics.

4. TorMC model application

4.1. Model performance

To illustrate the model’s reliability and performance, a simula-
tion based on 10 000 years of significant tornadoes across the
state of Oklahoma was conducted initially. Significant tornadoes
were simulated as they have been responsible for 98.8% of all
tornado fatalities and a majority of tornado damage since 1950
(Ashley, 2007; Simmons and Sutter, 2007). In addition, signifi-
cant tornado event frequency has remained consistent since 1950,
while non-significant tornado event frequency has risen substan-
tially due to non-meteorological influences (e.g. Doswell, 2007).

Oklahoma is a suitable candidate for examining model perfor-
mance due to its elevated significant tornado risk and relatively
large population centres exposed to this risk (e.g. Oklahoma City
and Tulsa). After testing a variety of simulation lengths, 10 000
years was a period of record that produced functional, yet com-
putationally efficient, output. The 10 000 year significant tornado
simulation was coupled with a gridded, fine-scale (100 m) resi-
dential built-environment cost surface, representing HUs across
Oklahoma in the year 2010. The HU cost surface is derived
from the Spatially Explicit Regional Growth Model (SERGoM;
Theobald, 2005), which employs a variety of geospatial data such
as water bodies, protected areas, Census block population, road
density, etc., to determine HU density at the 100 m scale in the
conterminous United States. SERGoM data accuracy and relia-
bility were measured using a hindcast technique, with the model
output comparable to Census data (Theobald, 2005).

Tornado counts from 1954 to 2014 were considered, while
tornado widths were modelled using the Weibull parameters out-
lined by Brooks (2004). Tornado lengths, azimuths and magni-
tudes were selected using a bootstrap sampling technique on the
observed tornado data. For the present study, a random tornado
touchdown probability coupled with the intersect cost-extraction
method was used although it may remove any potential climato-
logical patterns of tornado occurrence and attributes. However, a
potential benefit in using this tornado placement technique is that
it avoids tornado reporting bias that may be, in part, due to pop-
ulation density (e.g. Doswell et al., 2005). This bias is evident
when comparing observed significant tornadoes (Figure 5(a))
to the randomly chosen 61 simulation years (Figure 5(b)). In
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Figure 5. (a) Observed SVRGIS significant (EF2+) tornado footprints from 1954 to 2014 (dark black lines) with the SERGoM total number of
housing units (HU) per ha in 2010 for the state of Oklahoma. (b) Same as in panel (a) but with a random 61 years of simulated significant tornado
footprints. (c) Same as in panel (a) except for the TorMC’s 10 highest annual HU impact years. The period of 61 years was selected because that was

the temporal range of observed historical events used in the Tornado Impact Monte Carlo (TorMC) simulations.

this case, clustering of significant tornado footprints around the
Oklahoma City metropolitan area is apparent in the observed
historical tornado data, while the TorMC-simulated footprint
placement illustrates a random pattern.

Over the 10 000 year simulation, the TorMC model gener-
ated 116 045 significant tornadoes, with 73.8% EF2, 20.6% EF3,
5.1% EF4 and 0.6% EF5 tornadoes (Table 1). The simulated per-
centages of tornadoes by EF magnitude are similar to those from

Oklahoma’s observed record from 1954 to 2014 (i.e. 71.6% EF2,
21.2% EF3, 6.3% EF4 and 0.9% EF5). The model produced a
mean (median) of 11.6 (10) significant tornadoes per year over
the 10 000 year simulation with a violent tornado occurring every
1.5 years (Table 2). This represents a 66% chance a violent tor-
nado will traverse Oklahoma in a given simulation year. A ran-
dom sample of 61 years was chosen from the 10 000 year sim-
ulation (sample period) and compared to the observed tornado
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Table 1. Significant and violent tornado attributes from the 10 000 year TorMC model simulation for the state of Oklahoma. Tornado EF magnitude,
count, mean annual count, mean length, mean width, mean azimuth are denoted.

Magnitude Count Mean annual count Mean length (km) Mean width (m) Mean azimuth (∘)

EF2 85 645 8.56 12.01 122.44 66.89
EF3 23 846 2.38 25.64 262.45 66.08
EF4 5919 0.59 51.19 457.40 67.21
EF5 635 0.06 63.87 551.45 67.58
EF2+ (Significant) 116 045 11.60 17.09 170.64 66.74
EF4+ (Violent) 6554 0.66 52.42 466.51 67.25

Table 2. TorMC model results from a 10 000 year simulation of significant tornadoes atop the state of Oklahoma. Tornado event EF magnitude,
return period, annual occurrence probability, the mean number of HUs affected by a given tornado and the mean number of HUs impacted by all

tornadoes in a simulation year are indicated.

Magnitudea Return period (years) Annual occurrence probability Mean tornado impact (HU) Mean annual impact (HU)

EF2 0.12 8.56 24.53 210.07
EF3 0.42 2.38 73.62 175.56
EF4 1.69 0.59 205.84 121.84
EF5 15.75 0.06 306.76 19.48
EF2+ (Significant) 0.09 11.60 45.41 526.94
EF4+ (Violent) 1.53 0.66 215.62 141.32

aGiven the distribution of tornadic winds within a footprint, only a small percentage of the total HUs affected by the tornado footprints are subject to significant or violent
tornado wind speeds (e.g. Strader et al., 2015a).

data of 1954–2014 (observed period). Comparisons between the
sample and observed record revealed a consistent median number
of significant tornadoes per year (11), while the mean number of
significant events per year was 14.6 and 12.1 for the observed and
sample periods, respectively. The statistical difference between
the randomly sampled 61 simulated years and observed years is
attributed to the year-to-year variability of simulated significant
tornado counts. The percentages of tornadoes by EF magnitude
for the observed (71.6% EF2; 21.2% EF3; 6.3% EF4; 0.9% EF5)
and sampled (73.2% EF2; 21.0% EF3; 4.3% EF4; 1.5% EF5)
periods are also similar, revealing that the TorMC model data
mirrors the observed data.

The 10 000 year Oklahoma simulation generated mean signif-
icant tornado length and width of 17.1 km and 170.6 m, respec-
tively (Table 1). Compared to the observed data, and as illustrated
in Brooks (2004) and Strader et al. (2015a), tornado length and
width typically increase as EF magnitude escalates. Mean tor-
nado lengths for significant tornadoes ranged from 12 km (EF2)
to 63.9 km (EF5), while mean tornado widths varied from 122.4
m (EF2) to 551.5 m (EF5). All mean simulated tornado lengths
by EF magnitude are within 5 km of the corresponding empiri-
cally sampled data. Mean simulated tornado path widths by EF
magnitude are all within 5 m of the Brooks (2004) mean mod-
elled tornado widths by EF magnitude (cf. figure 2 in Brooks,
2004). Simulated tornado azimuths closely resemble those of
the sample observed tornado data with the mean simulated path
azimuth for all significant tornado paths at 66.7∘ (slightly west
of southwest to east-northeast), which aligns with the observed
azimuths found in the south central U.S. region (cf. figure 5 in
Suckling and Ashley, 2006).

Using the 2010 SERGoM cost surface, the mean (median)
number of HUs affected by a single significant tornado foot-
print is 45.4 (2.2) (Table 2). Mean HU impacts are much larger
than median impacts because of the rare and ‘extreme’ distribu-
tion nature of the TorMC model POE curves (Figure 6). As a
majority of tornadoes do not traverse developed landscapes (e.g.
people and HUs), mean HU impacts are influenced much more
by high-end (POE < 0.1) simulation years compared with the

median. Because of this, the median HU impacts are a more desir-
able central tendency metric.

Similar to the TorMC model length and width results, as the EF
scale magnitude increases, the mean number of HUs impacted
by a tornado footprint is amplified. Violent tornado footprints
affected a mean (median) of 215.6 (25.1) HUs per tornado foot-
print. Because violent tornadoes are, on average, longer-tracked
and wider, they often affect an exponentially greater number of
HUs compared with non-violent tornadoes. In fact, ranking the
tornado footprints by the number of HUs they affected reveals
that 20 out of the top 25 individual tornado impact values orig-
inated from violent events. However, aggregating or grouping
the individual tornado footprint costs to an annual sum indi-
cates that significant tornadoes affect a greater number of HUs
on average (mean and median) over a given simulation year com-
pared with violent tornadoes (Table 2). This is attributed to the
more frequent occurrence of EF2 and EF3 tornadoes compared
with EF4 and EF5 tornadoes. While tornado length and width
play an important role in individual tornado impacts, the annual
number of HUs affected is influenced more heavily by signifi-
cant tornado frequency. For instance, TorMC-modelled signifi-
cant events affected a mean of 526.9 HUs per simulation year,
whereas violent footprints affected a mean of 141.32 HUs per
simulation year. It should be noted that although this TorMC
simulation example employs significant tornadoes as a measure
of tornado exposure, regions of greater rural land concentration
(Oklahoma) can lead to an underestimation in tornado inten-
sity (e.g. Doswell et al., 2009) and/or counts (e.g. Brooks et al.,
2003). This is attributed primarily to the lack of people to wit-
ness and report a tornado event as well as an absence of damage
indicators necessary for estimating tornadic winds in rural areas
(Doswell et al., 2009).

Statistical measures, such as POE curves, are often used to
gauge the likelihood of hazard occurrence by intensity or mag-
nitude. A POE curve of the annual HU impacts for the state of
Oklahoma in 2010 reveals that the mean (median) annual num-
ber of HUs impacted by significant tornadoes is 526.9 (183.7)
(Figure 6). The difference between the mean and median values
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suggests that the mean is influenced heavily by the simulation
years where significant tornadoes affected a large number of
HUs. The maximum annual number of HUs impacted for the
10 000 year simulation was 35 922. During this hypothetical year,
a 2.6 km wide, 38.6 km long EF4 tornado traversed the Okla-
homa City metropolitan area, affecting over 34 884 HUs. This
particular simulated tornado contained a total footprint area of
100.36 km2, which is over four times the impact size of the
2013 Newcastle-Moore EF5 tornado footprint (23.6 km2). It also
impacted nine times as many HUs as the 2013 Newcastle-Moore
tornado (3829 HUs). As expected, simulation years where a
significant or violent tornado footprint traversed highly popu-
lated areas resulted in a large number of annual HUs affected
(Figure 5(c)). The standard deviation of the annual number of
HUs impacted for all 10 000 simulation years is 1130.2, and the
co-efficient of variation is 214.5%, suggesting that the yearly
impact sums are also highly variable.

4.2. Comparison of Alabama, Illinois and Oklahoma POE
Measures

To demonstrate model cost-extraction performance further, POE
curves for two additional states (Alabama and Illinois) were cre-
ated using the same TorMC model parameters as the Oklahoma
simulation (Figure 6). These states were chosen because of their
relatively high tornado risk and differing exposure character. This
provides the opportunity to examine how changes in risk and
exposure manifest in tornado disaster potential for different geo-
graphical regions. Oklahoma is situated in the heart of what is
colloquially known as Tornado Alley (cf. Brooks et al., 2003;
Dixon et al., 2011), where significant tornado occurrence risk
is high (Smith et al., 2012; Tippett et al., 2015), and popula-
tion density is clustered mostly within a few metropolitan areas.
Alabama has a high significant tornado risk (Coleman and Dixon,
2014) with elevated tornado exposure due to a relatively high
population density compared with Oklahoma. Illinois features
a mixture of the disaster constituents found in the other state
samples, with a large population density and moderate-to-high
significant tornado risk. The three POE curves represent the
TorMC-simulated annual number of HUs impacted by signifi-
cant tornado footprints per 1000 km2 using a 2010 SERGoM HU
cost surface (Figure 6). The POE curves are normalized by their
individual state areas (km2) to control for differences in state size.

The POE curves highlight the effects of tornado exposure (HU
density and distribution) and risk (significant tornado frequency,
length, width, magnitude, etc.) on annual impact probabilities.
Oklahoma contained the greatest number of simulated signif-
icant events due to its higher significant tornado occurrence
compared with Illinois and Alabama (Table 3; Figure 7). Addi-
tional annual HU impact statistics such as the median, 25th per-
centile, 75th percentile, mean, standard deviation and maximum
annual number of HUs affected by significant tornadoes capture
underlying differences in state tornado risk and vulnerability as
well as the relative contributions of each constituent to disas-
ter potential. Comparing the three states, Oklahoma contains the
largest number of simulated tornadoes, while Alabama encom-
passes the highest mean annual simulated EF2+ footprint area.
However, upon examining each state’s mean annual number of
HUs impacted per 1000 km2, Illinois has the greatest (10.4) mean
annual HU impact, followed by Alabama (7.16) and Oklahoma
(2.93). This result suggests that although some of the dissimi-
larities in annual HUs affected in each state can be attributed to
different tornado frequency and footprint risks (i.e. EF2+ tor-
nadoes have affected 108.3 km2 per year on average (mean) in

Figure 6. (a) Probability of exceedance (POE) curve comprising a
10 000 year simulation of the annual number of housing units (HUs)
affected by significant tornadoes throughout the state of Oklahoma. (b)
Same as in panel (a) but Oklahoma (solid line), Illinois (dashed line) and
Alabama (dot line) POE curves represent the annual number of affected
HUs normalized by state area (1000 km2). (c) Same as in panel (b) but
zoomed in to highlight 20 or less annual number of HUs impacted by

tornadoes.

Alabama from 1954 to 2014 compared with Oklahoma (101.3
km2) and Illinois (42.5 km2)), a majority of the disparity in the
tornado annual impacts in Alabama, Illinois and Oklahoma can
be attributed largely to the overall number of 2010 HUs that are
exposed to simulated significant tornado events in each state. For
instance, Illinois contains more HUs (4 132 154) than Oklahoma
(1 903 946) and Alabama (2 293 091) because of the very large
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Table 3. The annual number of affected housing units (HUs) normalized by state (Alabama, Illinois and Oklahoma) area (1000 km2) for 10 000
TorMC model simulations using the 2010 SERGoM HU cost surface.

State Normalized EF2+ count 25th Percentile Median 75th Percentile Mean Standard deviation Maximum

Alabama 643 1.14 3.48 8.57 7.16 12.40 445.53
Illinois 600 0.64 2.73 9.33 10.40 25.89 590.97
Oklahoma 641 0.29 1.02 3.04 2.93 6.26 198.42

The number of simulated significant tornadoes normalized by state area (tornadoes per 1000 km2) as well as the 25th percentile, median, 75th percentile, mean, standard
deviation and maximum annual number of HUs affected per 1000 km2 are represented.

Figure 7. Panels (a)–(c) illustrate the percentage of total state developable area by land use (LU) classification (rural (>16.18 hectares (ha) per HU);
exurban (0.8–16.18 ha per HU); suburban (0.1–0.8 ha per HU); and urban (<0.1 ha per HU); Theobald, 2005; cf. Table 4)). The size of each circle

is scaled by the total developed land area in each individual state.

and densely populated Chicago metropolitan area in addition to
a number of other smaller metropolitan regions. Breaking down
the total number of HUs by land use (LU) classification reveals
that Illinois contains ∼2.2 million HUs more than Oklahoma and
Alabama in the urban and suburban LU classification (Table 4).
The annual HU impact POE curves are largely influenced by
whether a state contains a highly populated metropolitan area
with a large number of HUs. As illustrated by the Illinois curve
(Figure 6), a region encompassing a location with a large num-
ber of HUs has a tendency to ‘pull’ the POE curve tail towards
greater magnitude impact values. This results in more variability
(i.e. higher standard deviation) in the annual significant tornado
impact values. Those regions with relatively fewer HUs cause the
POE curve to ‘decay’ much more quickly, effectively shifting the
tail of the POE curve towards lower magnitude impact values.

The differences in the mean annual HU impacts of Alabama,
Illinois and Oklahoma can be explained largely by the varia-
tion in the total number of HUs in each state and whether the
state contains a highly populated metropolitan area dominated
by urban and suburban LU. However, the 25th and 50th (median)
percentiles of the POE curves indicate how rural and exurban
LU influence the tornado disaster potential (Tables 3 and 4;
Figure 6). Although Illinois has the greatest mean annual HU
impacts compared with the other two states, Alabama has the
highest (3.48) median annual HU impacts. As exemplified in
Figure 6(c), the POE curve associated with Alabama outpaces
the Oklahoma and Illinois curves until approximately 6.5 annual
HUs are impacted per 1000 km2 when the Illinois curve sur-
passes the Alabama curve. This effect can be attributed to the
difference in the Illinois and Alabama rural and exurban LU or,
more generally, how the HUs are distributed across all LU classes
(Table 4). A large majority (91.6%) of Illinois HUs are under the
urban and suburban LU classification, while only 8.4% are sit-
uated in rural or exurban development. However, 31.5% of the

total HUs in Alabama is classified as rural or exurban devel-
opment type, suggesting that the spatial pattern of Alabama’s
residential built-environment is much more dispersed than that
of Illinois (Figure 6). Evidence of this pattern is also illustrated
when investigating the percentage of total developed area in
relation to the percentage of total HUs by LU classification.
Alabama, Illinois and Oklahoma all contain approximately the
same percentages (96–99%) of rural and exurban LU area, but
Alabama has approximately 30% of its total 97% rural–exurban
development in the exurban classification compared with Illi-
nois (10.2%) and Oklahoma (10.7%). The net effect of this
difference manifests in the total number of HUs in the exur-
ban LU classification for each state; Alabama has 32 000 and
41 000 more HUs in exurban LU than Illinois and Oklahoma,
respectively.

Overall, the comparison of the Alabama, Illinois and Okla-
homa POE curves show how tornado risk plays a minor role in
annual HU impacts, while disaster severity and frequency is more
often controlled by exposure, or physical vulnerability, attributes.
More specifically, the magnitude of total population and HUs, as
well as how it is distributed in geographical space, determine the
tornado hazard consequences and the disaster magnitude.

4.3. Incorporating and measuring spatiotemporal changes in
tornado risk and exposure

Subsequent iterations and applications of the TorMC model will
encourage stakeholders to assess how tornado disaster poten-
tial has changed or may evolve in the future given the continual
development and potential changes in environments supportive
of tornadoes. By supplying the TorMC model with a risk surface
weighted by future potential shifts in severe weather environ-
ments (e.g. Trapp et al., 2007; Diffenbaugh et al., 2013; Gensini
and Mote, 2014, 2015) and/or those researchers examining future
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Table 4. Developed land use classification for the 2010 SERGoM raster cost surface by state (Alabama, Illinois and Oklahoma).

State LU Total HU Percentage
of total HU

Total developed
area (km2)

Percentage of
total developed area

Alabama Rural 64 197 2.80 84 383 67.57
Exurban 657 708 28.68 37 763 30.24
Suburban 655 165 28.57 2447 1.96
Urban 916 020 39.95 289 0.23
Total 2 293 091 100.00 124 882 100.00

Illinois Rural 98 969 2.40 117 642 86.09
Exurban 246 661 5.97 13 931 10.19
Suburban 710 965 17.20 4216 3.08
Urban 3 075 558 74.43 873 0.64
Total 4 132 154 100.00 136 661 100.00

Oklahoma Rural 92 420 4.85 147 321 88.11
Exurban 332 987 17.49 17 991 10.76
Suburban 607 657 31.92 1596 0.95
Urban 870 882 45.73 295 0.18
Total 1 903 946 100.00 167 203 100.00

Total housing units (HUs), percentage of total HUs, total developed area (km2), percentage of total developed area by land use (LU)-developed classification. LU classes
are defined as rural (>16.18 hectares (ha) per HU); exurban (0.8–16.18 ha per HU); suburban (0.1–0.8 ha per HU); and urban (<0.1 ha per HU) (Theobald, 2005).

population growth, development or LU change (e.g. Bierwagen
et al., 2010), a more complete grasp of future tornado disaster
potential in a warming, and rapidly developing, world may be
reached. The spatiotemporal comparison of POE curves gener-
ated from historical risk and/or exposure surfaces and potential
future risk and/or exposure surfaces allows for the estimation of
changes in future tornado impact potential, frequency and mag-
nitude. This type of analysis is in line with the directives from
the Intergovernmental Panel on Climate Change (IPCC) Special
Report on Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaption (SREX), which calls for
research to improve the understanding of future climate risk and
extremes. The development of tools (i.e. non-stationary extreme
value analysis methods), especially those on a small scale, sup-
ports efforts aimed at increasing knowledge about future climate
events (Wilby, 2007).

5. Conclusion and discussion of future improvements

As the tornado disaster landscape continues to change due to
population growth and residential and commercial development
and possible shifts in environments supportive of hazardous
convective weather (Tippett et al., 2015), new tools for investi-
gating the potential consequences associated with the hazard are
needed (van de Walle and Turoff, 2007; Pelletier et al., 2015).
The Tornado Impact Monte Carlo (TorMC) model presented per-
mits the assessment of tornado disaster likelihood and severity in
a region. Illustrations of the model reveal the tool’s capacity for
exploring and understanding how tornado risk and vulnerability
intermingle at a location to estimate the disaster potential. This
capability may assist emergency managers, planners, insurers
and decision makers in their development of disaster mitigation,
response and recovery strategies for their communities.

Meyer et al. (2002) and Daneshvaran and Morden (2007)
paved the way for research that employed Monte Carlo (MC)
approaches in examining the tornado hazard and associated
impacts on society. The TorMC model incorporates elements
from both Meyer et al. (2002) and Daneshvaran and Morden
(2007) to estimate tornado impacts and disaster potential for
a region. Continued development of the TorMC model will
improve its efficiency by incorporating new and refined methods

and expand its utility. As outlined by Meyer et al. (2002), one
cannot assume that real, small-scale tornado features are con-
stant throughout the United States. Although the TorMC model
captures regional variability in tornado risk attributes (e.g. fre-
quency, magnitude, length, width, azimuth), this process could
be improved potentially as the observed tornado record lengthens
and new model techniques are implemented.

The iteration of the TorMC model only simulates theoreti-
cal tornado footprints that represent potential worst-case tornado
spatial dimensions (i.e. generated length multiplied by width).
Obviously, this is not the most accurate depiction of actual tor-
nado coverage as tornado intensity, width and azimuth vary
greatly as it traverses a landscape (Strader et al., 2015a). Danesh-
varan and Morden (2007) use a formula acquired from Twis-
dale et al. (1981) to determine how tornado wind speed and the
inferred damage intensity fluctuate throughout its life cycle. Sim-
ilarly, future TorMC model iterations will integrate tornado inten-
sity distributions (TID) (Strader et al., 2015a) in conjunction
with a weighted ‘random walk’ method (Weisstein, 2002b) to
capture better how tornado intensity, width and azimuth change
as the tornado navigates a setting.

Future TorMC versions will be able to ingest vector cost sur-
faces, which will permit the implementation of the areal weight-
ing tornado cost-extraction method. This type of modularity will
enable the model to simulate events atop any type of spatial
surface while also improving tornado impact estimates at any
spatial and temporal resolution. As vector data are a primary
source of geospatial information, the integration of this data
structure will enhance the overall applicability and versatility of
the model.

The Storm Prediction Center (SPC) has issued probabilistic
severe weather forecasts since 2000 and has given a number of
directives aimed at estimating potential severe weather impacts
on society (e.g. Smith et al., 2015a). Recent forecasting methods
tested at the National Oceanic and Atmospheric Administration
Hazardous Weather Testbed have illustrated the effectiveness
of probabilistic forecasting techniques for severe convective
weather (Karstens et al., 2015; Smith et al., 2015b). Many of
the TorMC model methods and techniques could be integrated
into ongoing research-to-operations initiatives at the SPC to
improve probabilistic societal impact estimation and resolution
of the model, and user confidence. In order to make this possible,
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improving the functionality and accuracy of the TorMC model
for shorter than annual time periods (i.e. seasonal, monthly,
weekly and daily) is needed. Such processes will require both
subjective user (e.g. forecaster) input and testing as well as
the continued advancement in research, employing numerical
forecast guidance (e.g. proxy severe weather reports using
the National Center for Environmental Prediction’s (NCEP)
High-Resolution Rapid Refresh (HRRR) model; Trapp et al.,
2011; Gensini and Mote, 2014) to approximate fine-scale, local,
severe weather occurrences.

The TorMC model has a number of potential applications
beyond this initial investigation. The methods and techniques
used in the development of this model could be expanded to a
variety of other geophysical hazards such as severe non-tornadic
wind, hail, tropical cyclones, flooding, volcanic eruptions, earth-
quakes, to improve the overall understanding of how these haz-
ards interact with and impact society. Because of this applicabil-
ity, future work regarding the TorMC model choices and impli-
cations will be illustrated through a user guide or manual. This
manual will enable users to apply the TorMC model in their own
research efficiently.

Models employing similar computational strategies to the
TorMC may spur disaster mitigation and response strategies
on the local, state and national scales. The adaption, improve-
ment and enforcement of land-planning policies could increase
the resilience while reducing the hazard risk (e.g. Mann et al.,
2014; IPCC, 2014). For example, the implementation of tornado
safe rooms or tornado shelters and adaption of building codes
may enhance tornado survivability and decrease disaster conse-
quences in tornado-prone areas (Simmons and Sutter, 2007; Pre-
vatt et al., 2012; Simmons et al., 2015). Restricting new devel-
opment near uncertain and dynamic floodplains (Patterson and
Doyle, 2009), seismically and volcanically active areas (Strader
et al., 2015b), locations prone to wildfires (Bryant and Wester-
ling, 2014; Mann et al., 2014), regions subject to tropical cyclone
hazards and sea-level rise (Pielke et al., 2008; Maloney and Pre-
ston, 2014) may reduce disaster losses. As decision makers,
emergency managers and land use (LU) planners actively incor-
porate disaster potential into their policies and strategies and
invest in those strategies, hazard impacts could be decreased and
potential disasters averted.
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