
Stephen M. Strader
Assistant Professor, Dept. of Geography and the Environment, Villanova Univ., 800 E. Lancaster Ave., Mendel Hall G65F, Villanova, PA 19085 (corresponding author). ORCID: https://orcid.org/0000-0002-6472-3182. Email: stephen.strader@villanova.edu

David B. Roueche, A.M.ASCE
Assistant Professor, Dept. of Civil Engineering, Auburn Univ., Auburn, AL 36849.

Brett M. Davis, S.M.ASCE
Graduate Research Assistant, Dept. of Civil Engineering, Auburn Univ., Auburn, AL 36849.

https://doi.org/10.1061/(ASCE)NH.1527-6996.0000436

The authors would like to call attention to errors associated with Figs. 2, 5, 7, and 8 where older (pre-accepted for publication) versions of the figures were used in the published version of this research. This erratum serves to replace these incorrect figures with the correct versions so that the published figure captions match the illustrations. These errors occurred during the proofing stage of the manuscript after the paper was accepted for publication. As such, they do not affect the study results and conclusions. The correct figures and captions are provided herein.
Fig. 2. (a, b, and d) Day 3–Day 1 SPC severe weather categorical outlooks; (c and e) tornado probabilities; and (f–i) MD for the March 3, 2019, Beauregard-Smith Station tornado. A dot represents the tornado path location in (a)–(e) and a line signifies the approximate location of the tornado path in (f)–(i).
Fig. 5. Wind damage assessments for all structures in the tornado path: (a) spatial overview of entire tornado path using categorical damage ratings (base map by “World Imagery” Esri, Maxar, Earthstar Geographics, CNES/Airbus DS, USDA FSA, USGS, Aerogrid, IGN, IGP, and the GIS User Community); and (b and c) DODi for SWMHs, DWMHs, and PHs in Regions A and B of the tornado with respect to the center of the tornado. Lines indicate average DODi over 200-m-wide bins. Negative distances indicate homes located on the north side of the centerline. Jitter has been added to the y-coordinates to facilitate better visualization. Filled markers in (b) and (c) indicate fatality locations. (d) Box plot indicating the median, 25th, and 75th percentiles of DODi for all PHs, SWMHs, and DWMHs in Regions A and B.
Fig. 7. Common anchorage problems encountered in the Beauregard, Alabama, tornado included (a and b) frequent use of pan-style alternative anchorage systems, which provide no uplift resistance; and (c) corrosion of diagonal ties and ground anchors. The circle in plot (b) illustrates an overturned MH with a pan anchorage system. (Images by David B. Rouche and Brett M. Davis.)
Fig. 8. (a) DWMH construction diagram with critical components and their locations labeled. Thick dashed lines highlight those areas where common failure mechanisms occur during tornado events and relate to the damage survey photos [(b)–(g)]. Failure mechanisms in MHs included (b) separation at the marriage line in DWMH; (c) roof-to-wall connection failures; (d) wall-to-floor connection failures; and (e–g) failures of the anchorage system, specifically (e) sliding; (f) overturning/rolling; and (g) lofting. (Images by David B. Roueche and Brett M. Davis.)