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Changes in tornado risk and societal
vulnerability leading to greater tornado
impact potential

Check for updates

Stephen M. Strader1 , Victor A. Gensini2, Walker S. Ashley2 & Amanda N. Wagner1

Tornado risk, as determined by the occurrence of atmospheric conditions that support tornado
incidence, has exhibited robust spatial trends in the United States Southern Plains and Mid-South
during recent decades. The consequences of these risk changes have not been fully explored,
especially in conjunction with growing societal vulnerability. Herein, we assess how changes in risk
and vulnerability over the last 40 years have collectively and individually altered tornado-housing
impact potential. Results indicate that escalating vulnerability and exposure have outweighed the
effects of spatially changing risk. However, the combination of increasing risk and exposure has led to
a threefold increase in Mid-South housing exposure since 1980. Though Southern Plains tornado risk
has decreased since 1980, amplifying exposure has led to more than a 50% increase in mean annual
tornado-housing impact potential across the region. Stakeholders should use these findings to
develop more holistic mitigation and resilience-building strategies that consider a dynamically
changing tornado disaster landscape.

Severe convective storms—those capable of creating perils such as non-
tornadic damaging wind, large hail, and tornadoes—are responsible for
approximately half of all United States (US) billion-dollar weather disasters
since 19801. The annual number of billion-dollar, severe convective storm-
affiliated disasters has increased rapidly over the last two decades and
combined annual losses have escalated by more than 1 billion USD (infla-
tion-adjusted) every year1. Tornadoes present the greatest threat to life
compared to other severe convective storm hazards, causing an average of
more than 75 fatalities per year over the last 30 years2. Consequently, there is
an ever-increasing need for research that evaluates how tornado-society
impacts—as measured in this study by the potential number of housing
units (HU) exposed to tornadic winds—have historically changed from
both spatial and temporal perspectives. Our research addresses this dearth
by providing a more holistic assessment of how a changing environment
and society have individually and jointly influenced tornado-HU impact
potential over the last 40 years.

Prior research that has investigated spatiotemporal changes in
tornado-society relationships can be split into two groups: (1) those focused
on climate change-driven alterations to atmospheric conditions known to
influence severe weather and tornado production, intensity, and other
hazard characteristics3–14 and (2) those concentrated on human-driven
changes to the underlying societal and built-environment landscape that are
subject to tornado impacts15–25.

Studies examining the relationships between atmospheric conditions
and tornado occurrence have mostly assessed historical tornado observa-
tions and/or atmospheric condition-derived indices that serve as a proxy for
possible tornado events26–29. Although research employing tornado obser-
vations permits more detailed analyses of tornado incidence and damage
path characteristics, these data are often subject to biases given event
information is collected through public reporting and post-event damage
surveys conducted by NationalWeather Service (NWS) forecasters and, on
rare occasion, structural engineers30–33. One such atmospheric measure that
has been used to combat these shortcomings is the significant tornado
parameter (STP)34. A recent study noted that annual accumulated diurnal
maximum STP is a statistically significant (p-value ≤ 0.05) covariate to
tornado incidence, explaining 44%of the variance in annual tornado reports
across the conterminous US from 1979 to 201727. Robust trends in the
number of days supportive of tornadoes was uncovered using this method,
indicating thatmany locations in the lowerMississippiValley orMid-South
regionhavewitnessed an increase ofmore than2days per decade supportive
of tornadoes since 198027.

Research assessing changes in climatological tornado risk (i.e., the
probability of a tornado occurring in space and time35) only provides a partial
answer to the question of why there is a growing tornado loss trend. Societal
factors such as vulnerability, exposure, and adaptive capacity also play key
roles in determining tornado impact frequency and severity15,36–43.
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Vulnerability is commonlydefinedas thepotential for apersonor community
to suffer harm from a hazard and encompasses the concepts of exposure and
adaptive capacity. Exposure is defined as people, property, assets, and/or
systems present in geographies that are subject to potential losses, while
adaptive capacity relates to the ability of an individual, community, or system
to cope or adapt to hazard conditions37,44. Several prior studies have examined
how changing societal vulnerability and/or exposure influences tornado
impacts, finding that rapidly increasing vulnerability and exposure is leading
to more frequent and greater impacts on society18,20,22. This escalating hazard
exposure issue has been termed the expanding bull’s-eye effect, which
describes the relationship between built-environment growth—often referred
to as urban and suburban sprawl—andmore frequent and greatermagnitude
hazard impacts18,45. This type of research often relies on secondary datasets
such as the US Census enumerations and land use/land cover estimates
spanningmultipledecades todescribehowsocietal factors suchas thenumber
of people, homes, and other built-environment entities are growing and,
ultimately, leading to greater hazard exposure over time23. Other researchers
have used spatiotemporal data that represent the underlying population or
community to assess how changes in social vulnerability metrics (e.g., age,
race, ethnicity, household income, and educational attainment) have led to
greater distress during and after tornadoes affect communities38,40,43,46.

Additional research over the last two decades has used spatially explicit
tornado impact modeling to estimate potential damage to exposed societal
entities (i.e., homes, people, and critical infrastructure18,22). These studies
often use climatological risk and societal exposure data to simulate hazard
events atop exposed geographies, revealing the importance of built-
environment growth and changing atmospheric conditions on societal
impact probabilities. Most notably, research using these methods in con-
junction with tornado hazards has illustrated that societal impact prob-
abilities and magnitudes are dynamic and controlled by fundamental
tornado disaster constituents of risk and exposure20,21.

Our study builds on prior work by highlightingUS counties and regions
where both climate change variability-driven alterations in tornado risk and
societal growth-driven changes to vulnerability and exposure have collectively
led to greater tornado-society impact potential. We also determine which
tornado disaster constituent—risk or exposure—has been the primary driver
of changes to societal impacts (asmeasured by tornado-HU impacts) over the
last 40 years, especially in regions that have historically experienced the
greatest change in tornado activity over time. We employ data from a recent
study that assessed historical changes in tornado environments using spa-
tiotemporal representations of annual accumulated daily maximum STP27.
These data permit the determination of how favorable tornado environments
have changed in US county administrative boundaries from 1980 to 2020.
Again, in this study, we equate climatological tornado risk to the favorable
tornado environment frequency data aggregated to counties to avoid any
potential reportingorpost-eventdamage surveybiasesoften found in tornado
event data27. County-level Census vulnerability enumerations for the years
1980 and 2020 are also examined to determine where and how societal vul-
nerability and exposure have historically changed across the US.

Lastly, we use the Tornado Impact Monte Carlo (TorMC) model47,
climatological tornado risk data, and a fine-scale HU density dataset (i.e.,
Spatially Explicit Regional Growth Model (SERGoM)-Integrated Climate
Land Use Scenario v1 (ICLUSv1)48,49 to conduct potential tornado-HU
impact simulations. These simulations follow prior research techniques23,
updating and improving knowledge about the relative individual and
combined effects of changing tornado risk and societal exposure on tornado-
HU impact frequency and severity. Overall, our research aims to provide a
more thorough understanding of how tornado-HU impact potential has
been historically shaped by the combination of dynamically changing
environmental and societal landscapes.

Results
Changing tornado risk and population
The Mid-South region has experienced a notable increase in tornado risk
over the last 40 years when using accumulated annual STP as a proxy for

tornado incidence (Fig. 1A; Table 1). There has also been a robust decrease
in climatological tornado risk across the Southern Plains during the same
timeframe. The Mid-South’s amplifying trend is attributed to increasing
low-level storm-relative helicity juxtaposed with greater instability27. Con-
versely, a long-term increase in convective inhibition is primarily respon-
sible for the associated decrease in tornado risk in the Southern Plains50,51.

When aggregating STP-derived tornado risk changes to county
boundaries, 8 of the top 10 ranked counties that have experienced an
increase in tornado activity are in Mississippi (Fig. 2A, B; Table 1). Simul-
taneously, the top 10 counties that have experienced decreasing tornado risk
are in central and southern Texas. Five counties in the US—all residing in
Mississippi—have had their mean annual number of tornado days increase
bymore than 3.5 days per decade since 1980. Lafayette County,Mississippi,
had the greatest increase in tornado risk compared toall other counties,with
a mean decadal change of +4.1 tornado-supportive days. Grimes County,
Texas, is the only US county that experienced a decrease in the number of
tornado-supportive days greater than 2.5 tornado days per decade. These
results are in line with prior research that investigated historical changes in
tornado frequency26–28.

Eastern US counties associated with large population centers experi-
enced the greatest increase in total population from 1980 to 2020 (Fig. 1B;
Table 2). However, population has declined over time in some urban
counties such as Allegheny County, PA (Pittsburgh), Cook County, IL
(Chicago, IL), Cuyahoga County, OH (Cleveland), Erie County, NY (Buf-
falo), and Wayne County, MI (Detroit), while the suburban and exurban
counties adjacent to these urban-core counties simultaneously witnessed
substantial population growth.

We furtherassessedchanges in tornado exposure by comparing county
population density in 1980 and 2020 (Fig. 1; Panel C). Only six counties in
the study area have experienced a decrease in population density since 1980:
Forest County, PA, Hamilton County, NY, Daggett County, UT, Harding
County, NM, Keweenaw County, MI, and Terrell County, TX. Counties
associatedwith cities suchasBoston,MA,NewYorkCity,NY,Philadelphia,
PA, and Washington, D.C., contained the greatest increase in population
density over the 40-year study period.

Approximately 59.8% (1203 of 2013) of counties examined in this
study witnessed both an increase in tornado days and population for the
1980–2020 period (Fig. 1; Panel D). Only 4.1% (82 of 2013) of counties
experienced a decrease in both tornado risk and population. Approximately
7.5% (150 of 2013) of counties have observed an increase in population but a
decrease in tornado risk, while 28.6% (578 of 2013) of counties had a
decrease in population and an increase in tornado risk. These results suggest
that changing societal exposure has offset some of the possible climate
change-driven shifts to tornado risk over the last four decades. The inverse
of this relationship is also true for counties that had a decrease in population
and an increase in tornado risk over time.

The mean annual number of tornadoes increased 2.7 days per decade
on average for counties in the 95th percentile and greater for tornado risk
changes (i.e.,Mid-South region). The population increased by 9816 persons
per county or 18.9 persons per km2 on average (mean) in these same
counties for the 1980–2020 period. Conversely, themean annual number of
tornado days decreased by 1.2 tornadoes per decade in Southern Plains
counties (i.e., counties within the 5th percentile of tornado risk changes).
However, the total population in these counties rapidly increased over time,
escalating by an average (mean) of 81,361 people or 51 people per km2 per
county.

Nearly 88% (134 of 153) of counties in the 95th percentile and greater in
tornado risk changes are in Alabama, Arkansas, Mississippi, and Tennessee.
The top 10 counties in theMid-Southhave all experienced an increase in their
total populationofgreater than45,000peopleover the40-yearperiod (Fig. 2C,
D; Table 2). Madison County, AL, had the largest population growth, adding
over 27,000 people per decade. The total population increased by more than
100,000 people in counties such as Shelby, TN (Memphis, TN),Washington,
AR (Fayetteville, AR), Johnston, NC (Raleigh, NC suburban area), and
DeSoto, MS (Memphis, TN suburban area). These counties represent those
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that experienced both a robust increase in tornado activity as well as con-
siderable population growth since 1980.

Not all counties in theMid-Southhavewitnessed their total population
increase. For instance, the total population in rural eastern Arkansas and
western Mississippi counties decreased by more than 7000 people per

county since 1980, yet tornado risk has simultaneously increased in these
areas. Washington County, MS witnessed the decrease in population
(−27,272) over the period, followed by Jefferson County, AR (−22,595),
and Mississippi County, AR (−18,121).

Tornado risk has decreased themost since 1980 in the Southern Plains
region (i.e., 5th percentile in tornado risk change; Table 3).Over85% (137 of
159) of the counties in the Southern Plains are in Texas. The population has
swelled by more than 1MM people since 1980 in the Texas counties of
Harris (Houston, TX), Tarrant (Fort Worth, TX), and Dallas (Dallas, TX).
Counties where tornado risk and population have decreased the most over
time are primarily located in Texas. Specifically, Gray County Texas
(Pampa, TX) is where this region’s population decline was greatest, losing
more than 4323 people over the four decades. Population also decreased by
more than 750 people per decade in Southern Plains counties such as
Dawson, TX (Lamesa, TX), and Wilbarger, TX (Vernon, TX). Together,
these findings illustrate where tornado exposure has been reduced due to
decreasing tornado risk and a declining population.

Changing tornado risk coupled with changes in societal
vulnerability
Assessing changes in societal vulnerability in counties that have experienced
notable increases in tornado risk provides further insight into the dyna-
mically evolving relationship between risk andvulnerability (Fig. 3; Table 3).
Only 5 of 17metrics denoted an improvement in vulnerability across theUS
from 1980 to 2020. These variables include poverty (−3.4%), unemployed
persons (−0.5%), persons under the age of 18 (−7.6%), persons under the
age of five (−1.8%), percentage of persons that are female (−0.7%), and the

Table 1 | Top10 ranking for counties that haveexperienced the
greatest increase in tornado days per decade from 1980
to 2020

Rank Tornado day change
per decade

County State

1 (3048) 4.1 (−2.5) Lafayette (Grimes) Mississippi (Texas)

2 (3047) 3.6 (−2.4) Marshall
(Comanche)

Mississippi (Texas)

3 (3046) 3.5 (−2.4) Benton (Erath) Mississippi (Texas)

4 (3045) 3.5 (−2.3) Tate (Austin) Mississippi (Texas)

5 (3044) 3.5 (−2.3) Pontotoc (Hamilton) Mississippi (Texas)

6 (3043) 3.4 (−2.2) Chester (Palo Pinto) Tennessee (Texas)

7 (3042) 3.4 (−2.1) Union (Colorado) Mississippi (Texas)

8 (3041) 3.3 (−2.1) Crittenden (Lavaca) Arkansas (Texas)

9 (3040) 3.3 (−2.1) Alcorn (Waller) Mississippi (Texas)

10 (3039) 3.3 (−2.0) Lee (Calhoun) Mississippi (Texas)

Parentheticals indicate those counties that had the greatest decrease in tornado days for the same
period. Cf. Fig. 2A, B.

Fig. 1 | Tornado risk and societal exposure changes. County-level change
(1980–2020) in the A favorable number of tornado days per decade as measured by
the annual accumulation of significant tornado parameter (STP). Bold (black)
outlined counties denote those that are within the 95th (Mid-South) or 5th
(Southern Plain) percentile ranking for changes in tornado days from 1980 to 2020.

Counties with no change in decadal tornado days or those removed from analyses
are colored gray. Also provided are county-level absolute changes inB the number of
persons and C population density (persons per km2) from 1980 to 2020. Panel
D highlights the county-level combinations of increasing or decreasing tornado days
paired with increasing or decreasing population from 1980 to 2020.
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percentage of persons who did not graduate high school (−37.7%). The
number of persons with a high school diploma increased the most over the
40-year study period followed by the percentage the US population under
the age of 18. These findings support prior research that has illustrated that
US high school educational attainment has increased dramatically over the
last half century52. Further, US birth rates are at record lows in recent years,
leading to fewer young people (e.g., less than 5 years of age)53.

Many other metrics assessed in this work demonstrate an increasing
vulnerability trend. The percentage of homes that are considered manu-
factured has increased most compared to all other vulnerability measures,
escalating12.3% in the last 40years.This increasingpercentagehasoccurred
despite the number of newly constructed and shippedmanufactured homes
decreasing over the last decade54. Other vulnerability measures that have
increased since 1980 include persons needing public assistance (+2.6%),

Fig. 2 | Counties with the greatest change in tornado risk and societal exposure.
Top 10 county-level rankings for greatestA decrease andB increase inmean tornado
days per decade from 1980 to 2020. Panel C andD represent the top 10 county-level
rankings within the 5th percentile in tornado day changes region and 95th percentile
in tornado day changes region. The transparent gray area of map represents the 5th

percentile in tornado day changes region (Panel C) and the 95th percentile in
tornado day changes region (Panel D). Gage County, Nebraska (Panel C) and
Johnston County, NC (Panel D) are not shown in their respective maps as they are
too far outside of the region to bemapped in conjunctionwith the other counties. Cf.
Tables 1 and 2.
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renters (+3.0%), persons 65 years of age and older (+4.4%), minority
populations (+8.6%), Hispanic populations (+3.8%), and female head of
households (+7.4%). Of these amplifying vulnerability metrics, the min-
ority population percentage has increased most given the increased inter-
national migration of Asian, Latino, or Hispanic populations over the last
few decades55. The percentage of female heads of households has also
increased substantially, with this finding being attributed to lower marriage
rates and a larger percentage of females purchasing homes56.

Equally weighting all 17 vulnerabilitymeasures into an overall county-
level societal vulnerabilitymetric indicates that counties, where tornado risk

increased the most over time, are in the 70th percentile and greater for
societal vulnerability compared to the USmean (50th percentile). Thus, the
overall vulnerability in counties where tornado risk has increased over time
are 20% more vulnerable on average in 2020 compared to all other US
counties. There was very little change in the overall vulnerability percentile
ranking from 1980 through 2020 for counties in theMid-South, suggesting
that there has not been an improvement in resilience in the most tornado
fatality-prone region of the US15,20. Individual vulnerability metrics such as
manufactured housing, minority population, etc., illustrate that critical
individual household or population vulnerability measures may be rapidly

Table 2 | Changes in population from 1980 to 2020 for counties that are within the 95th (Mid-South) and 5th (Southern Plains)
percentile for changes in tornado days per decade from 1980 to 2020

Mid-south region Southern plains region

Rank Population change County, State Population change County, state

1 (153) 170,720 (−27,272) Madison, AL (Washington, MS) 2,271,062 (−4323) Harris, TX (Gray, TX)

2 (152) 159,498 (−22,595) Shelby, TN (Jefferson, AR) 1,216,273 (−3335) Tarrant, TX (Dawson, TX)

3 (151) 135,704 (−18,121) Washington, AR (Mississippi, AR) 1,066,244 (−3214) Dallas, TX (Wilbarger, TX)

4 (150) 132,709 (−16,621) Johnston, NC (Phillips, AR) 990,026 (−2908) Bexar, TX (Gage, NE)

5 (149) 128,326 (−14,233) DeSoto, MS (Coahoma, MS) 861,462 (−2633) Collin, TX (Kleberg, TX)

6 (148) 78,608 (−12,761) Faulkner, AR (Leflore, MS) 831,311 (−2274) Travis, TX (Refugio, TX)

7 (147) 67,829 (−9614) Saline, AR (Morehouse, LA) 718,564 (−2173) Denton, TX (Terry, TX)

8 (146) 52,465 (−8657) Pulaski, AR (Pemiscot, MO) 660,046 (−2158) Fort Bend, TX (Coleman, TX)

9 (145) 50,916 (−8222) Limestone, AL (Desha, AR) 493,916 (−2099) Williamson, TX (Jefferson, OK)

10 (144) 45,842 (−7173) Craighead, AR (Monroe, AR) 461,701 (−2064) Montgomery, TX (Fisher, TX)

The top 10 county-level ranking for highest and lowest population change over the study period is provided. Values and text in parentheses represent the bottom 10 ranking for county-level population
changes. Cf. Fig. 2C, D.

Table 3 | Vulnerabilitymetrics andabsolute changes in themeanpercentage, percentile ranking, anddifferences in vulnerability
metrics from 1980 to 2020 for counties that are within the 95th (i.e., Mid-South) and 5th (i.e., Southern Plain) percentile for
changes in tornado days per decade from 1980 to 2020

Category Metric 1980 2020 Differences

Mean % Mean percentile
ranking

Mean % Mean percentile
ranking

Mean %
difference

Mean percentile ranking
difference

Socio-economic Poverty 21.8 (16.5) 0.76 (0.57) 18.4 (13.7) 0.73 (0.49) −3.4 (−2.9) −0.030 (−0.077)

Unemployed 3.2 (1.5) 0.61 (0.16) 2.7 (2.2) 0.59 (0.47) −0.5 (0.7) −0.019 (0.310)

Public Assistance 13.8 (8.2) 0.81 (0.52) 16.4 (12.3) 0.67 (0.47) 2.6 (4.1) −0.134 (−0.048)

Housing Manufactured Homes 9.3 (8.1) 0.52 (0.43) 21.5 (18.0) 0.66 (0.57) 12.3 (9.9) 0.141 (0.145)

Renters 26.4 (27.0) 0.48 (0.50) 29.4 (27.9) 0.55 (0.49) 3.0 (0.9) 0.073 (−0.011)

Age Aged 65+ 14.1 (15.6) 0.59 (0.63) 18.5 (18.3) 0.45 (0.44) 4.4 (2.8) −0.135 (−0.183)

Aged 17 or Younger 30.3 (28.5) 0.57 (0.42) 22.7 (23.4) 0.57 (0.64) −7.6 (−5.1) 0.005 (0.217)

Aged 4 or Younger 7.7 (7.6) 0.52 (0.47) 5.9 (6.2) 0.57 (0.61) −1.8 (−1.4) 0.046 (0.132)

Race and
Ethnicity

Non-white 21.4 (14.1) 0.67 (0.67) 30.0 (31.2) 0.62 (0.69) 8.6 (17.0) −0.048 (0.028)

Black 20.6 (7.1) 0.72 (0.59) 22.7 (6.7) 0.72 (0.54) 2.1 (−0.4) −0.009 (−0.046)

Hispanic 0.1 (5.2) 0.27 (0.88) 3.9 (29.3) 0.36 (0.87) 3.8 (24.1) 0.093 (−0.009)

Migration Migrants 0.2 (1.3) 0.30 (0.76) 0.6 (1.7) 0.35 (0.63) 0.4 (0.4) 0.056 (−0.132)

Language Poor English 1.3 (15.9) 0.19 (0.79) 1.5 (6.4) 0.36 (0.79) 0.1 (−9.5) 0.173 (0.003)

Disability Disability 7.8 (5.7) 0.80 (0.46) 9.8 (7.3) 0.76 (0.48) 2.0 (1.5) −0.037 (0.015)

Sex Female 51.5 (50.9) 0.68 (0.54) 50.9 (49.4) 0.67 (0.44) −0.7 (−1.5) −0.010 (−0.103)

Female Head of
Household

6.8 (4.8) 0.65 (0.42) 14.2 (11.7) 0.71 (0.58) 7.4 (6.9) 0.061 (0.152)

Education No High School Diploma 51.9 (46.6) 0.77 (0.65) 14.1 (14.2) 0.70 (0.65) −37.7 (−32.5) −0.065 (0.006)

Overall All −(−) 0.71 (0.66) − (−) 0.70 (0.68) − (−) −0.01 (−0.02)

Values in parentheses represent mean vulnerability measures for Southern Plains counties.
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increasing in areas where tornado risk—again, as measured by favorable
tornado environment frequency—is also growing.

Counties thathave experienced the greatest decline in tornado riskover
time would normally result in decreasing tornado-HU impact potential.

However, many Southern Plains counties have experienced an increase in
societal vulnerability and exposure since1980 (Fig. 3; Table 3). Specifically, 7
of 17 (41.2%) vulnerability measures in the Southern Plains illustrate
decreasing vulnerability over time. These include poverty (−2.9%), per-
centage of the population under the age of 18 (−5.1%), persons less than 5
years old (−1.4%), black population (−0.4%), persons with poor English
(−9.5%), female population (−1.5%), and those with no high school
diploma (−32.5%). Increases in vulnerability are evident across 10 Southern
Plains vulnerability measures, with the percentage of non-white population
increasingmost in the region at over 24%. Again, this is largely attributed to
strong international migration from Hispanic or Latino countries from
which many persons seek employment in agricultural settings in the Great
Plains57–59.

Other increasing vulnerability measures such as the non-white popula-
tionpercentage (+17%),manufacturedhomepercentage (+9.9%),personson
public assistance (+4.1%), persons over 65 years old (+2.8%), and percentage
of homes with a female head of household (+6.9%) all suggest escalating
societal vulnerability in the SouthernPlains.However, the overall vulnerability
mean percentile ranking change (−0.02) does indicate that Southern Plains
vulnerability has been neutral or decreasing slightly over time. Factors such as
the percentage of the total persons that donot speakEnglishwell and/or living
in manufactured homes are likely more important considering their ties to
severe weather threat messaging58,60 and sheltering issues41,61–64.

Pragmatic tornado-housing impact simulations
Tornado-housing impact simulations provide context into which changing
factor—risk or exposure—has been driving historical tornado-society
impact probability. Overall, themean annual tornado-HU impact potential
east of the Continental Divide has increased by more than 80% (+9000
HUs) since 1980 (Fig. 4E; Table 4). The 90th percentile and greater prob-
abilities represent those years where there were several large tornado out-
breaks and/or many of the tornadoes traversed high-density, urban, and
suburban areas such as Atlanta, GA, Chicago, IL, Dallas-Fort Worth, TX,
etc. The variability (standard deviation) in annual EF1+ tornado-HU
impact potential also increased by 46.1%over the 40-year period. East of the
Continental Divide, the 90th percentile and greater annual tornado-HU
impact probability increased by over 15,000HUs, or 78.0%, since 1980. The
95th and 99th percentile probabilities also illustrate the same trend, with the
99th percentile escalating more than 24,000 HUs, or 65.1%, over four
decades.

Scaling analyses down to the Mid-South and Southern Plains regions
where risk has increased (95th percentile; Mid-South) or decreased (5th
percentile; Southern Plains) over the last 40 years permits a more refined,
region-based understanding of how US tornado-HU impact potential may
be evolving over time (Fig. 4F; Table 4). The Mid-South’s mean annual
EF1+ tornado-HU impact potential hasmore than tripled over the last four
decades. Simultaneously, the interannual variability inMid-South tornado-
HU impact potential doubled. Mid-South’s 90th through 99th percentile
tornado-HU impacts also increased over 100% since 1980, with 90th per-
centile values inflating by approximately 160%.

Tornado-HU impact potential in the Southern Plains also increased
over the last few decades; albeit comparatively less than theMid-South. This
result was expected, given tornado risk in the Southern Plain has decreased
over the last 40 years (Fig. 1A). Nevertheless, escalating exposure in the
region led to an approximate 60% increase in mean tornado-HU impact
potential. Associated interannual variability in tornado-HU impact prob-
abilities swelled over the same period, rising by more than 1000 HUs, or
73.0%. Southern Plains’ 90th percentile and greater annual impact prob-
abilities have all increasedmore than1200HUs, or 57%,with99thpercentile
impacts increasing most at nearly 5000 HUs, or 79.2%.

Comparing changes in tornado-HU impact potential for the Mid-
South and Southern Plains shows that Mid-South tornado-HU impact
potential has increased notably more than the Southern Plains (Fig. 4F;
Table 4). This result is attributed to both the increasing tornado risk and
built-environment growth theMid-South has experienced over the last four

Fig. 3 | Changes in county-level societal vulnerability. County-level overall vul-
nerability percentile ranking for A 1980 and B 2020. Panel C illustrates the change
county-level percentile ranking from 1980 to 2020. Bold (black) outlined counties
denote those that are within the 95th (Mid-South) or 5th (Southern Plains) per-
centile ranking for changes in tornado days from 1980 to 2020.
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decades. Although tornado risk across the Southern Plains has declined
since 1980, rapidly escalating built-environment exposure (i.e., suburban
and exurban growth in metropolitan areas such as Austin, Dallas-Fort
Worth, and Houston, TX) has led to increasing tornado-HU impact
potential over time.

Experimental control tornado-housing impact simulations
The results above illustrate that the area east of the Continental Divide has
generally experienced increasing tornado-HU impact potential over time,
even for regions where there has been a decrease in tornado risk (e.g.,
Southern Plains). These results, however, do not describe the relative
importance of changing risk and exposure on tornado-HU impact potential.
As such,weuse a set of experimental control simulations to illustratehow the

two fundamental disaster constituents of risk and exposure are individually
and collectively influencing tornado-HU impact potential (Fig. 5A; Table 4).
Results from solely allowing tornado risk to change and holding HU
exposure constant in areas east of the Continental Divide suggest that the
changes in tornado risk have had little influence on changing tornado-HU
impact potential. Conversely, allowing exposure to change over time while
holding any spatial changes to tornado risk constant illustrates that built-
environment growth has been the primary driver for alterations to tornado-
HU impact potential. There is very little difference between the historical
simulation and changing risk-constant exposure scenario and the current
and changing exposure-constant risk scenario when comparing pragmatic
historical simulation impact statistics to the experimental risk and exposure
control impact statistics east of the Continental Divide (Fig. 5A).

Fig. 4 | Changes in tornado-housing unit impact potential. The 25-year mean
annual EF1+ tornado days fromA from1973 to 1997 andB 1998–2021 on an 80-km
grid is provided along with housing unit (HU) density maps on a 100-m grid for the
years of C 1980 and D 2020. Bold (black) outlined counties denote those that are
within the 95th (Mid-South) or 5th (Southern Plains) percentile ranking for changes

in tornado days from 1980 to 2020. The probability of exceedance (POE) curves for
the combination of 1980 risk and exposure (gray line) and 2020 risk and exposure
(black line) for regions east of the Continental Divide are provided (E). Panel
F provides POE curves for the Southern Plains (blue lines) and the Mid-South (red
lines) regions for the years 1980 (dashed line) and 2020 (solid lines).
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However, because tornado risk has changed most in the Southern
Plains and Mid-South, the experimental control simulation results in these
regions provide more detail about how both changing risk and societal
exposure affect tornado-HU impact potential at a finer spatial scale (Fig. 5B,
C; Table 4). In the Mid-South, amplifying exposure has outweighed the
effects of increasing tornado risk. Expectedmean andmedian annual EF1+
tornado-HU impact probabilities are over 16% greater in the changing
exposure-constant risk scenario. The largest differences betweenMid-South
changing exposure-constant risk and changing risk-constant exposure
scenarios are found in the 95th and 99th percentile annual HU impacts,
where the changing exposure-constant risk 95th and 99th percentile
impacts are 22.5%and19.9%greater, respectively, than in the changing risk-
constant exposure scenario.

In the Southern Plains, experimental control simulation results are
notably different than in the Mid-South. Specifically, the changing risk-
constant exposure scenario’s mean annual tornado-HU impacts are nearly
half of the region’s actual historical (1980) mean annual impact prob-
abilities, highlighting the region’s decreasing tornado risk over time. Simply,
without increasing exposure, tornado-HU impact potential in the Southern
Plains would have decreased over time. Conversely, the changing exposure-
constant risk scenario illustrates how much worse tornado-HU impact
potential could be in the Southern Plains without a historical decrease in
tornado risk. Changing exposure-constant risk mean annual impact prob-
abilities are nearly double that of the actual present-day (2020)mean annual
impact measures. High-end annual impact statistics (i.e., 90th, 95th, and
99th percentiles) more clearly illustrate the importance of both risk and
exposure change given 99th percentilemeasures for the changing exposure-
constant risk are nearly three times greater than the changing risk-constant
exposure scenario.

Discussion
We assessed how historical changes in climatological tornado risk, vul-
nerability, and exposure have individually and collectively influenced
impact and disaster potential across the US. Tornado-HU impact potential
is rapidly escalating over time due to increases in tornado risk, vulnerability,
and exposure. However, the relative influence of each of these disaster
constituents varies regionally, signifying the importance of assessing
impacts at finer spatial scales. Climatological tornado risk in the Southern
Plains has decreased over time while its built-environment footprint has
expanded. The combination of these two factors has led to amore than 50%
increase in tornado-HU impact potential in the region. This demonstrates
that changing exposure is a greater contributor to the Southern Plains’

increasing tornado-HU impact potential than spatially changing tor-
nado risk.

Mid-South analyses also highlight the importance of both risk and
exposure changes in controlling societal impact potential since both mea-
sures have increased over time in the region. As a result, the Mid-South
experienced a threefold escalation in tornado-HU impact potential since
1980. The ramifications of these findings point to the need for further
integration of societal factors in the climate change research community. For
instance, several prior studies have highlighted the importance of manu-
factured housing in the context of tornado mortality and impacts18,40,62,64–68.
Additionally, other recent works have suggested that climatological tornado
risk and other tornado attributes such as length, width, damage rating or
intensity, etc. have changed over time, especially at the regional scale16,24,69–71.
Findings from these works may be incorporated into future studies to
determine their importance in conjunction with spatially changing tornado
risk on potential tornado-society impacts. In all, climate change-driven
changes to risk and society-controlled changes in vulnerability should be
assessed in conjunction to better understand how tornado impacts and
disasters have and may potentially change over time. This statement also
holds true for research investigating climate change influences on deadly
hazards such as flooding, temperature extremes, tropical cyclones, etc.

Exposure is only a single component of vulnerability. Other measures
related to society or the built environment, such as socioeconomics, housing
type, race, ethnicity, age, etc., can have notable influence and control on
tornado disaster frequency and severity37,72. Thus, coupling increasing
exposure and riskwith escalating social vulnerability points to the possibility
of not just greater tornado-HU impact potential but also increasing impacts
as measured by other means (e.g., indirect impacts) and disaster potential.
Disasters are ultimately a measure of a community’s ability to cope with
hazard impacts and directly relate to human distress when hazard events
affect society37,38,40,42,43,72. Nowhere is this more important than in the Mid-
South, where tornado mortality is the greatest15,40,73. The results presented
herein suggest that this issue is worsening over time.

Lastly, findings from this study highlight the importance of inter-
disciplinary research aimed at reducing the impact of hazards on society.
Stakeholders and policymakers can use these findings to improve weather
hazard mitigation activities and plans at the local and regional scales. For
example, continued focuson the improvementof building codes,more strict
enforcement of these building codes, retrofitting of existing vulnerable
structures, and providing sheltering options—especially for highly exposed
and vulnerable populations—will reduce financial losses and improve sur-
vivability when the next tornado event occurs.

Table 4 | Annual total EF1+ tornado-housing unit (HU) impact descriptive statistics (median, mean, standard deviation (SD),
90th, 95th, and 99th percentiles) for areas east of the Continental Divide, the Mid-South, and Southern Plains

Region Scenario Simulation layers Impact statistics

Risk Exposure Median Mean SD 90th 95th 99th

East of the Cont. Div. Historical 1980 1980 10,636 12,160 7436 19,672 24,118 36,947

Current 2020 2020 19,755 22,063 10,866 35,009 41,348 60,995

Changing Risk 2020 1980 10,909 12,275 6252 19,924 23,808 34,480

Changing Exposure 1980 2020 19,650 22,084 12,448 35,430 41,811 60,604

Mid-South Historical 1980 1980 448 646 728 1340 1875 3414

Current 2020 2020 1392 1809 1585 3493 4657 7796

Changing Risk 2020 1980 728 990 967 1948 2614 4672

Changing Exposure 1980 2020 855 1175 1174 2418 3277 5704

Southern Plains Historical 1980 1980 540 964 1381 2197 3150 6310

Current 2020 2020 849 1565 2389 3460 5180 11,306

Changing Risk 2020 1980 309 643 1068 1501 2243 5024

Changing Exposure 1980 2020 1477 2413 3032 5325 7412 14,772

The different combinations of changing risk and exposure in the regions are provided as simulation layers, risk and exposure.
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Methods
Tornado risk data generation
Methods are split into three primary sections that outline our process for
examining historical changes in (1) climatological tornado risk, (2)
societal vulnerability and exposure, and (3) tornado-housing unit (HU)
impact potential. First, we follow themethods described in a prior study27

by generating historical county-level representations of tornado risk
from 1980 through 2020. Specifically, North American Regional
Reanalysis (NARR)74 data were used to generate representations of the
annual accumulated daily maximum significant tornado parameter

(STP; https://rda.ucar.edu/datasets/ds608.0/; Eq. 1) across the US.

STP ¼ SBCAPE
1500

x
2000� SBLCL

1000
x
SRH01
150

x
BWD06

20
ð1Þ

STP is a unitless metric that combines measures of surface-based
convective available potential energy (SBCAPE), surface-based lifting con-
densation level (SBLCL), 0–1-km storm-relative helicity (SRH01), and 0–6-
km bulk wind difference (BWD06). Values were calculated at the native
3-hourly NARR temporal interval. NARR-derived STP values were verti-
cally interpolated from isobaric levels to calculate BWD06 and spatially
maskedwhere unfavorable convective inhibition (<−50 J kg−1) was present.
An annual accumulated STP measure was then calculated by summing all
STP daily (1200–1200UTC)maximums over a given year on the native 32-
km Lambert Conformal NARR grid. Prior work that assessed monthly
regressions between the STP metric and historical tornado observations
found that annual accumulatedmaximumSTPexplains 44%of the variance
in annual tornado counts compared to tornado reports from the Storm
Prediction Center’s database27. These efforts established that STP can be
used as an environmental proxy for tornado occurrences while also con-
trolling the reporting bias oftenpresent in historical tornado report data30–33.

This prior research also assessed the trend in STP on the NARR grid
using a Theil-Sen slope estimator coupled with Kendall’s τ statistic to
determine any spatial or temporal changes in tornado risk27. Their results
indicate that there has been an increase in favorable tornado environments
across the Midwest and Lower Mississippi Valley and a decrease in the
Southern Plains since 1980. We recommend readers examine the methods
and findings from this prior work for a more detailed explanation of how
changes in tornado environments across the US were determined. Per-
taining to the research outlined in this study, daily maximum STP values
accumulated annually from 1980–2020 were proportioned into county
administrative boundaries to facilitate a spatiotemporal comparison
between county-level STP and societal vulnerability measures.

Societal exposure and vulnerability data generation
For societal vulnerability change analyses, we employ US Census Bureau
data for the years 1980 (Supplemental Fig. 1) and 2020 (Supplemental Fig.
2). Specifically, county-level Census enumerations related to socioeconomic
and demographic characteristics, population, and housing were used to
approximate underlying population magnitude and societal vulnerability.
Variables such as total population, HU, households, age, race, ethnicity, sex,
income per capita, public assistance, education, housing type, and house-
hold size were examined. Previous studies have discussed the importance of
these variables when assessing society vulnerability36,37,43; specific societal
measures used in this study and the reasons for their inclusion are provided
(Supplemental Table 1). Each vulnerability metric was normalized by per-
centages of total county population or households to control for different
size counties and total county population, HUs, and households. Counties,
where administrative boundaries changed from the 1980 to the 2020 Cen-
sus, were excluded from analyses and only those societal variables that
existed in both the 1980 and 2020 Censuses were considered. Although
Census enumerations smaller than county-scale are preferred when asses-
sing these measures in relation to tornado damage paths, Census tracts and
smaller are not available for a large portion of theUS before 199018. Lastly, it
should be noted that many 2020 Census variables may suffer from slight
overcounting or undercounting at the state scale75.

Wealso followmethods outlined inprior researchby equallyweighting
each of the 17 vulnerability measures based on their percentile ranking to
generate an overall vulnerability metric40,43,76,77. Differences between the
county-level 1980 and 2020 vulnerability measures are also calculated by
measuring the change in percentile ranking for each individual vulnerability
variable and the overall vulnerability metric (Supplemental Fig. 3).

Fig. 5 | Experimental tornado-housing unit impact simulations. Probability of
exceedance (POE) curves for the total number of homes affected by EF1+ tornadoes
for three regions: A east of the Continental Divide, B 95th (Mid-South), and C 5th
(Southern Plains) percentile ranking for changes in tornado days from 1980 to 2020
regions. Baseline (1980 risk and 1980 exposure; gray lines) and current (2020 risk
and 2020 exposure; black lines) are provided for the three regions. Dashed blue lines
represent solely changing tornado risk and constant exposure from 1980 to 2020.
Dashed red lines signify solely changing exposure and constant risk housing impact
probabilities from 1980 to 2020.
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Tornado impact Monte Carlo (TorMC) model simulations
The Tornado Impact Monte Carlo (TorMC) model was the primary tool
used in conjunction with historical tornado risk and societal exposure data
to assess tornado-HU impact potential50. Simulations comprising 2500
years of Enhanced Fujita scale 1 and greater (EF1+) tornado damage
footprints were generated with the TorMC to reveal the individual and
combined influence of changing tornado risk and societal exposure on
impacts over the last 40 years. Several simulation lengths (i.e., 1000-year,
2500-year, 5000-year, and 10,000-year) were explored, and the 2500-year
simulation length was the ideal combination given model runtime, accu-
racy, and impact statistic convergence. EF1+ tornado paths were chosen to
represent tornado risk because their annual counts over time have been
relatively stable compared to all (EF0+) tornado counts20,78.

More specifically, the TorMC is a spatially explicit model that uses
climatological information such as tornado incidence, damage magnitude
ormaximumdamage rating, path lengths, widths, bearings, etc., to generate
synthetic tornado paths across a user-defined geographic region of interest.
The simulated paths are then intersected with an underlying exposure or
cost surface that represents exposed entities (e.g., persons, homes). Spatially
Explicit Regional Growth Model (SERGoM)48 and Integrated Climate
Land-Use Scenario version 1 (ICLUSv1)49 model were employed in this
study to represent the underlying exposed built environment. The SERGoM
model provides fine-scale decadal HU density estimates across the US from
1940–2000 at the 100-m gridded resolution. SERGoM employs inputs of
protected landareas,water, roaddensity,Census enumerations, developable
lands, etc., to spatially allocate the total number of HUs in a county to fine-
scale grids using dasymetric techniques79. The SERGoM and ICLUSv1
modeling methods are functionally identical, but the SERGoM solely pro-
vides decadal gridded HU estimates from 1940 to 2000.

The SERGoM model is the backbone of the ICLUSv1 model, but
instead of using historical county-level HU enumerations to allocate HUs
into fine-scale grids, the ICLUSv1 model employs county-level HU growth
rates projected from the year 2000 and onward to estimate decadal, fine-
scale HU density from 2010 to 210079. HU growth rates in the ICLUSv1
model are controlled by Special Report Emission Scenarios (SRES) climate
change storylines that consider both economic and environmental factors
that influence population and HU growth rates. For example, the ICLUSv1
A2 SRES scenario is focused on more regional economic development,
whereHUgrowth rapidly accelerates from the year 2050onward. Specific to
our methods and analyses, we use the ICLUSv1 A1 SRES model output to
represent 2020 HU density—and, therefore, societal exposure—given the
total number of HUs in all ICLUSv1 grids most closely match that of the
2020CensusHUtotals inour study regions79,80.Weassessed this accuracyby
summing the total ICLUSv1 SRES A1 HUs within the US and comparing
this value to the 2020 Census HU enumerations. The benefit of using the
SERGoMand ICLUSHUdataoverCensus tract or largerHUenumerations
is its gridded respresentation48 (i.e., Census tract spatial boundaries change
over time). Aside from geospatial resolution, another critical limitation to
using Census tract or smaller data enumerations besides spatial scale is the
limited availability prior to 1990 for many counties across the U.S80. To the
best of our knowledge, there are no other publicly available exposure
datasets that provide gridded representations of housing or similar built-
environment variables across the US at fine spatial scales (~100m).

Amore detailed and thorough explanation of the TorMCmodel steps,
biases, and verification are presented in prior work47. We follow prior
research that has employed the TorMCbypresenting the results in the form
of probability exceedance curves and descriptive statistics that highlight
mean, median, standard deviation (SD), 90th, 95th, and 99th percentile
annually accumulated HU impact probabilities22,23.

Several 2500-year simulations were conducted across three primary
study regions or domains: (1) east of the Continental Divide, where most
tornadoes in theUS occur (2) counties within the 95th percentile of changes
in tornadodays from1980 to 2020 (i.e.,Mid-South), and (3) countieswithin
the 5th percentile of changes in tornado days from 1980 to 2020
(i.e., SouthernPlains). The tornado-HU impact simulationswere conducted

to reveal the relative individual and combined influence of escalating
tornado risk and exposure in each region.

All simulations use three pieces of information: (1) historical tornado
observations from the Storm Prediction Center’s database, (2) spatial
weighting surface that determines the probability of a tornado path being
generated in a given US region, and (3) a cost surface that determines how
many exposed entities (i.e., HUs) were affected per simulated tornado path.
The first group of pragmatic simulations employs two 80 km× 80 km grids
representing mean annual tornado days for the 25-year periods of
1973–1997 and 1998–2021. These risk layers were created to represent
tornado risk prior to and after the noted changes in regional trends in
tornado incidence from the Southern Plains to theMid-South and present-
day tornado risk. Although we are unable to directly employ the STP-
derived tornado day proxy data in the TorMC simulations becausemuch of
the historical STP analysis period pre-dates the satellite era (i.e., pre-1980s),
these tornado observation periods most closely match results from prior
environmental proxy research27,78. Ultimately, the baseline and current
gridded tornado risk surfaces served as the spatial weighting surfaces for
syntheticEF1+ tornadoplacement across theUS in theTorMCsimulations.
The numberof tornadoes generated in each simulationwas not altered from
1980 to 2020 simulations because no studies have uncovered a temporal
change in the mean annual number of EF1+ observed tornado events81.

Experimental control TorMC simulations were created for each region
to isolate the contributions of an increasing exposure or risk. Specifically,
two simulations per region were conducted: (1) permitting tornado risk to
regionally change as found in prior proxy research27 while holding exposure
constant, and (2) permitting HU exposure to change from 1980 to 2020
whileholding tornado risk constant.Together, thedifferences inPOEcurves
and impact descriptive statistics—relative to the realistic scenarios where
historical risk ismatchedwith historical exposure or current risk ismatched
with current exposure—permit us to determine the relative importance of
changing tornado risk and societal exposure on tornado-HU impact
potential.Wemove beyond prior work by incorporating reanalysis-derived
findings from work focused on uncovering historical changes in tornado
risk and consider how both spatial and annual tornado count changes
influence tornado-society impact probabilities.
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